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Abstract
The performance of parametric magnetoencephalography (MEG) and
electroencephalography (EEG) source localization approaches can be degraded
by the use of poor background noise covariance estimates. In general,
estimation of the noise covariance for spatiotemporal analysis is difficult mainly
due to the limited noise information available. Furthermore, its estimation
requires a large amount of storage and a one-time but very large (and sometimes
intractable) calculation or its inverse. To overcome these difficulties, noise
covariance models consisting of one pair or a sum of multi-pairs of Kronecker
products of spatial covariance and temporal covariance have been proposed.
However, these approaches cannot be applied when the noise information is
very limited, i.e., the amount of noise information is less than the degrees of
freedom of the noise covariance models. A common example of this is when
only averaged noise data are available for a limited prestimulus region (typically
at most a few hundred milliseconds duration). For such cases, a diagonal
spatiotemporal noise covariance model consisting of sensor variances with no
spatial or temporal correlation has been the common choice for spatiotemporal
analysis. In this work, we propose a different noise covariance model which
consists of diagonal spatial noise covariance and Toeplitz temporal noise
covariance. It can easily be estimated from limited noise information, and no
time-consuming optimization and data-processing are required. Thus, it can be
used as an alternative choice when one-pair or multi-pair noise covariance
models cannot be estimated due to lack of noise information. To verify
its capability we used Bayesian inference dipole analysis and a number of
simulated and empirical datasets. We compared this covariance model with
other existing covariance models such as conventional diagonal covariance,
one-pair and multi-pair noise covariance models, when noise information is
sufficient to estimate them. We found that our proposed noise covariance
model yields better localization performance than a diagonal noise covariance,
while it performs slightly worse than one-pair or multi-pair noise covariance
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models—although these require much more noise information. Finally, we
present some localization results on median nerve stimulus empirical MEG
data for our proposed noise covariance model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Brain imaging technologies have been developing for nearly a century. About a decade ago,
MEG/EEG technologies emerged commercially and opened a new era for brain research.
Unlike the widely used functional magnetic resonance imaging (fMRI), they can detect neural
electrical current directly and map brain temporal functional activities at up to a fraction
of a millisecond resolution. The source localization problem, i.e., the inverse problem of
reconstructing the neural electrical current that produced the MEG/EEG measurements, is
inherently illposed3 and confounds the spatial resolution of MEG/EEG systems.

Since the inception of commercial MEG/EEG systems, a number of MEG/EEG source
localization methods have been developed and commercialized; see Hämäläinen et al (1993).
Most methods reconstruct optimized current distributions or dipole sources under certain
constraints. These methods can be categorized into parametric (Hämäläinen et al 1993, Mosher
et al 1992, Huang et al 1998, Uutela et al 1998, Schmidt et al 1999, Jun et al 2002) and non-
parametric approaches (Pantazis et al 2005, Darvas et al 2005). Parametric approaches aim
to find the optimal solution or solutions (in some sense) which fit well both the measurements
and any other prior information. Non-parametric approaches aim to estimate source/sources
by scanning source space and detecting statistically significant source configurations.

Due to the central limit theorem, the noise of averaged data is expected to be Gaussian
distributed and to be parameterized with a noise covariance matrix. This Gaussian noise model
is a basic component of most statistically based inverse approaches and the proper use of its
noise covariance is of great importance. It has been reported that noise covariance estimation
has a significant effect on localization performance in both spatial-only analyses (Jun et al
2002) and spatiotemporal analyses (De Munck et al 2002, Plis et al 2006).

The most widely used noise covariance model consists of sensor variances with no spatial
or temporal correlation. This is a very simple model compared to the most general form
for the spatial–temporal noise covariance matrix. The most general form has too many
parameters to estimate in practice, while the simple and most commonly used noise model
ignores the correlation that is present in the background noise. Recently, Huizenga et al
(2002), De Munck et al (2002), Plis et al (2006) proposed new noise covariance models
that use a pair (or sum of pairs) of Kronecker products of spatial covariances and temporal
covariances under the assumption that spatial and temporal noise structures are separable.
These models have many fewer free parameters than the most general covariance models
and may be estimated by prestimulus regions of typical non-averaged, multiple-epoch evoked
response data. Nevertheless, they still require more noise data than are usually available in
the prestimulus regions of averaged evoked response data.

In this work, we propose a different noise covariance model that can be estimated
from the prestimulus regions of commonly available averaged evoked response data, using
simple statistics without the need for a more complex and time-consuming procedure-like
optimization. Our proposed noise model’s capability was tested on a number of simulated

3 Many different solutions exist from the same set of measurements.
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datasets with a spatiotemporal, multi-dipole analysis (Jun et al 2005). These simulated data
were generated by adding simulated dipolar sources to empirical noise data. The performance
of our proposed noise model was compared with that of other existing noise covariance models,
including the diagonal model, one-pair and multi-pair Kronecker products models. Finally
we present and compare localization results from the multiple noise models using empirical
median nerve stimulus data.

2. Noise covariance models

Due to the central limit theorem of statistics, it is reasonable to expect that brain noise
of averaged data is, in general, Gaussian distributed with a covariance explaining its noise
structure. For parametric source analysis approaches, it is common to optimize how well a
given source model of neural current fits the measurements using a log-likelihood function.
For Gaussian, zero-mean averaged background noise, the log-likelihood function is as follows:

−1

2

∑
ktk′t ′

[
Bkt −

∫
Lk(x)J (x, t) dx

]
COV−1

kt;k′t ′

[
Bk′t ′ −

∫
Lk′(x ′)J (x ′, t ′) dx ′

]
. (1)

Here Bkt are the measurements (the data being analysed) at channel k and time t; J (x, t) is the
neural current source at location x and time t; Lk(x) is the linear operator (lead field) projecting
source space (source at x) into sensor space (channel k). COV is the sample covariance of the
averaged background noise, which is of our ultimate interest to estimate.

2.1. Diagonal model

The simplest noise covariance model is the diagonal model. This model assumes that the noise
is uncorrelated, and is parameterized by diagonal elements consisting of sensor variances.
This model is easily calculated even when noise information is very limited and is the most
commonly used noise model.

2.2. Kronecker product models

Based on the assumption that temporal (T) and spatial (S) covariances of background noise
are separable and independent, a single pair Kronecker product model was developed with its
parameters estimated through a maximum likelihood method (De Munck et al 2002):

COVone-pair = T ⊗ S. (2)

Here ⊗ denotes the Kronecker product. In addition, Huizenga et al (2002) described a
simpler one-pair model consisting of parameterized spatial covariance and Toeplitz temporal
covariance whose parameters were determined through minimizing the difference between an
estimated full noise covariance (sample noise covariance) and the given model.

To better estimate and capture noise structure, a model consisting of a sum of Kronecker
products was introduced (Plis et al 2006):

COVmulti-pair =
L∑

l=1

Tl ⊗ Sl . (3)

In this model spatial components Sl of rank 1 are paired with their corresponding full temporal
covariance matrices Tl . In Plis et al (2006), this model and its inversion were estimated as
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follows: (
L∑

l=1

T̂l ⊗ Ŝl

)−1

=
L∑

l=1

T̂−1
l ⊗ Ŝl ,

Ŝl = vlv
′
l , T̂l = λ2

l

1

M(M − 1)

M∑
m=1

(um,l − ūl)(um,l − ūl)
′.

Here T̂l and Ŝl are estimators of the model Tl and Sl . vl is the lth column vector of the
orthogonal matrix V estimated by singular value decomposition (SVD)4. We remark that the
spatial components Ŝl are orthogonal. This orthogonality ensures that the inversion of this
covariance model is practical.

These one-pair and multi-pair Kronecker product models tremendously reduce the degree
of freedom (DOF) of spatiotemporal noise covariance, thereby enabling one to estimate noise
covariance in an efficient way as long as reasonably sufficient noise information is available5.
However, these models are inadequate when available noise information is less than the noise
model’s DOFs or even slightly more than these DOFs. This is the case, for example when only
averaged noise (prestimulus) information for a limited time duration (about a few hundred
milliseconds) is available. Furthermore, these models are difficult to apply to real-time analysis
due to their required preprocessing time.

2.3. Our proposed noise covariance model and its estimation method

Our primary interest is to show an improvement on the estimation of noise structure while
using very limited noise information compared to that achieved with the widely used diagonal
covariance. If the total available noise information is extremely limited, i.e., comparable to the
DOF of diagonal noise covariance, the noise covariance estimation cannot be improved further.
However, we have room to develop a better noise covariance estimation if the total available
noise information is much greater than that used by the DOF of diagonal noise covariance but
it is not enough to estimate Kronecker product noise models. This is the situation we focus
on presently.

Our proposed model retains the one-pair Kronecker product model and constrains it into
a diagonal spatial covariance matrix and a Toeplitz temporal covariance matrix:

COVone-pair-limited-data = Ttoeplitz ⊗ Sdiag. (5)

4 Assuming that we have M times single trial noise data (T (number of time points) ×L (number of sensors) matrix),
{E1, E2, . . . , EM }, singular value decomposition is applied to all stacked background noise data A:

A =




E1

E2

.

.

.

Em

.

.

.

EM




= U�V′ =




U1

U2

.

.

.

Um

.

.

.

UM




�V′, (4)

where V is an L × L orthogonal matrix consisting of spatial column vectors {v1, v2, . . . , vL}, the T × L matrices Ui

form an MT × L orthogonal matrix U, and � is an L × L diagonal matrix with diagonal elements {λ1, λ2, . . . , λL}
being singular values of A. Here um,l and ūl denote lth column vectors of matrices Um and Ū, which is an averaged
matrix of Um over m = 1, . . . ,M . In this derivation, cross covariance between orthogonal spatial component and
time point was assumed to be negligibly small. For more detail, refer to Plis et al (2006).
5 In general, single trial noise collection without any stimuli for a certain time is required.
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It was reported in Bijma et al (2003) that spatiotemporal empirical noise for MEG/EEG has
temporal stationarity. This allows the temporal noise covariance to be modelled as a Toeplitz
matrix. Interestingly, this model amounts to a special case (the parameters β in Huizenga’s
work, determining spatial correlations, is set to zero) of the model proposed by Huizenga et al
(2002). Huizenga’s model should be determined through minimizing the difference between
the model and the estimated full spatiotemporal noise covariance. It requires a great deal of
noise information for estimating the full noise covariance as well as a time-consuming (in
general) optimization procedure.

Here we propose an alternative estimation of the one-pair Kronecker product model (5)
for limited data. If collected data of continuous spatiotemporal noise information in a matrix
n of L × M

n = {n(i, j)|1 � i(channel) � L, 1 � j (time sample) � M} (6)

is given, and an L×L spatial covariance matrix estimator Ŝdiag and P ×P(P � M) temporal
covariance matrix estimator T̂toeplitz should be estimated, they are simply calculated by

ŝ(i, i) =

 M∑

j=1

(n(i, j) − n̄i,·)2


/

M (sensor variance) (7)

t̂ (i, j) =
(

L∑
l=1

acorl(i − j)

)/
L (averaged autocorrelation) (8)

acorl (p) =




∑M−|p|
m=1 (n(l,m) − n̄l,·)(n(l,m + |p|) − n̄l,·)∑M

m=1(n(l,m) − n̄l,·)2
, |p| < M

0, otherwise

(9)

n̄i,· =

 M∑

j=1

n(i, j)




/
M. (10)

Here ŝ(i, j) and t̂ (i, j) are elements of matrices Ŝdiag and T̂toeplitz, respectively.
This estimation procedure comes from physical intuition rather than optimization

procedure. The optimized estimators based on the model (5) could be sought, but we
experienced that lack of enough noise information could cause the divergence of an
optimization procedure. Our intention is to develop a reasonable (it may not optimal, but
should be efficient in terms of computation speed and accuracy) noise covariance. Thus
the above estimator (7)–(10) is good enough in a sense that it is calculated in real time from
simple statistics and it captures more temporal noise structure than a diagonal noise covariance.
Studying how our estimator can be related to the optimized estimators is another interesting
topic that can be investigated.

This estimation requires more time samples than the dimension of the temporal covariance
matrix in order to get reasonable statistics. In section 4, we will discuss the cases in which the
number of time samples is less. We remark that our proposed noise covariance estimation can
be computed in real-time and thus could be applicable for real-time single trial analysis under
the assumption of Gaussianity of single trial noise.
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3. Experiments

The main reason one seeks to develop good noise covariance models and their estimators is
to improve source localization performance. In this section, we apply our proposed noise
covariance for both simulated and empirical MEG data, and investigate how our proposed
noise covariance model could improve localization performance. As a localization method,
we use the spatiotemporal Bayesian inference dipole analysis (Jun et al 2005, 2006) which
was recently developed by our team and is briefly outlined below.

3.1. Bayesian inference dipole analysis

Bayesian inference is a general procedure for constructing a posterior probability distribution
for quantities of interest from the measurements and the given prior probability distributions
for all uncertain parameters. The method is conceptually simple and relatively straightforward,
and begins with the standard Bayes’ rule of probability for known information B and unknown
information θ :

P(θ |B) ∝ P(B|θ)P (θ). (11)

Here P(θ |B), P (B|θ) and P(θ) mean conditional posterior of θ for given B, conditional
probability of B for given θ (likelihood distribution), and prior information of θ , respectively.
This enables one to combine any additional information straightforwardly through the Bayes’
rule. The posterior distribution P(θ |B) contains the information—how well a state θ can
explain the measurements B in the given physical model. Commonly, the obtainable posterior
distribution is numerically sampled using Markov Chain Monte Carlo (MCMC) techniques
(Jun et al 2005, 2006, Chen et al 2000, Gilks et al 1995).

Formulation. Assuming that the sources of neuromagnetic fields are localized, we employ
a fixed dipole source model with a variable number (from 0 to some maximum) of current
dipoles where the dipole locations and orientations are fixed over time. We used a spherical
head model and the Sarvas forward model (Sarvas 1987) in this work. Considering this
configuration, θ and its prior distribution in (11) can be given by

θ = {N, X, O, J, t, C}
P(θ) = P(O|X, N)P (J|N)P (X|N)P (t|N)P (C)P (N).

(12)

Here B, N, X, J, O, t and C mean a spatiotemporal measurement, the number of sources,
a location matrix, a current time course matrix, an orientation matrix, active time range
information, and a noise covariance matrix, respectively.

We use uniform priors for the orientation O, the location X, the active time range t and the
number of sources N. Particularly, we use the prior of covariance C as the kth-order inverse
Wishart distribution with mean COV. COV would be estimated here as our proposed noise
covariance model. k is 2 dim(COV)+1. Prior for current time course J is chosen as a Gaussian
distribution N(0, C). A covariance C was given as the temporal correlation matrix of one time
point with another, which allows us to include the temporal correlation at nearby latencies.

Assuming a Gaussian noise model of mean zero and noise covariance matrix C, the
likelihood P(B|θ) can be described:

P(B|θ) ∝ 1

|C|1/2
exp

(
−1

2
(�B − �Bc)

′C−1(�B − �Bc)

)
, (13)

where Bc is a calculated measurement through the forward model and is depending on the
unknown parameters. Finally, combining the likelihood distribution as well as all prior
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distributions yields the following posterior distribution:

P(θ |B) ∝ |COV|(k−1)/4|C|−(k+1)/2

|C|1/2

× exp

(
−1

2

[
�B′

nC−1 �Bn + �J′C
−1�J + Tr

(
k − 1

2
[COV]C−1

)])
,

where �Bn = �B − �Bc. �A means the vector stacking all column vectors of the given matrix A.
Tr, | · | and ′ denote trace, determinant and transposition, respectively.

In order to lessen local minima problems as well as to compute the posterior distribution
efficiently, the posterior can be simplified by eliminating insignificant eigenvalues of temporal
correlation matrix C and by marginalizing the posterior over both current time course J and
noise covariance C (Jun et al 2005, 2006).

Sampling. Next, we produce a sampling of many likely solutions from the obtained posterior
distribution. We use Markov Chain Monte Carlo (MCMC) to sample the posterior probability
distribution P(θ |B) on the parameter space. All MCMC methods are designed to construct
a Markov chain (θ(0), θ (1), θ (2), . . .) and to choose the transition probabilities PT (θ(p+1)|θ(p))

in such a way that the probability distribution of the pth realization converges to targeted
distribution as p goes to infinity. After discarding samples during a burn-in period (MCMC
is usually required to do a convergence process for a while after its initialization), drawing
realizations of the Markov chain gives us a random sample of the probability distribution.
In particular in order to assure convergence of MCMC, it is sufficient that the following
‘detailed-balance’ condition is satisfied:

P(θ(p)|B)PT (θ(p+1)|θ(p)) = P(θ(p+1)|B)PT (θ(p)|θ(p+1)). (14)

We use the reversible jump (RJ) MCMC technique (Green 1995) allowing movement
between different parameter spaces and satisfying the detailed balance condition. In our
RJ-MCMC procedure, a candidate sample (θ∗) is chosen from two categorized proposal
distributions.

• Trans-dimensional proposal

– birth move: a new dipole and its parameters are proposed;
– death move: a randomly chosen dipole is proposed to be removed.

• Update proposal

– location update move: a dipole is randomly chosen and its new location is proposed;
– orientation update move: a dipole is randomly chosen and its new orientation is

proposed;
– active time range update move: a dipole is randomly chosen and its new active time

range is proposed.

For more details, refer to (Jun et al 2005, 2006).

3.2. Comparative localization performance for various noise covariances

We collected ten kinds of empirical noise datasets from a 4D Neuroimaging 122 Neuromag
gradiometer system (four kinds from two different experimental paradigms) and a VSM CTF
275-Channel MEG system (six kinds from three different experimental paradigms). More
detailed information on empirical noise datasets are described in the appendix. For each
empirical noise dataset, we generated a total of 20 kinds of three-dipole problems as follows.
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Figure 1. Left and middle: ten configurations for the three-dipole sources problem, which were
randomly chosen to generate ten simulated MEG data for one empirical datum (MN1-NEURO122-
LEFT). The same coloured three dipoles denote one {three-dipole sources problem}. Right: time
courses for each dipole source.

D1. We randomly chose ten kinds of three dipole locations on the cortex.
D2. We chose corresponding tangential orientations (the tangential part of voxel orientation

at the dipole location) of chosen dipoles.
D3. We generated three kinds of time courses, each of which corresponds with one of

three dipoles. In other words, we used the same three time courses for all three-dipole
problems.

D4. We calculated the corresponding spatiotemporal measurement through the forward
model (spherical head model, dipole current model) for each three-dipole problem.

D5. We extracted two different spatiotemporal empirical noise realizations (60 time sample
points) from the given empirical noise dataset.

D6. We added each empirical noise realization into the calculated measurement, and finally
generated two kinds of simulated data for each three-dipole problem.

Figure 1 illustrates two configurations (red and blue) of the three-dipole sources problem.
Regarding noise covariance, for each empirical noise dataset we estimated up to four

kinds of noise covariances based on different models, their estimation methods and noise data
availability:

• conventional diagonal estimation (DIAG);
• one-pair Kronecker product through maximum likelihood method (ONE-ML);
• multi-pair Kronecker product by singular value decomposition (MUL-SVD);
• our proposed one-pair Kronecker product by simple statistics (ONE-TOEP).

Among ten kinds of empirical datasets (four from Neuromag 122 and six from CTF 275),
both single trial noise datasets and averaged noise datasets for Neuromag 122 are available,
but single trial datasets for CTF 275 are not available. While DIAG and ONE-TOEP could be
estimated for all ten kinds of datasets, ONE-ML and MUL-SVD could not be estimated for
CTF 275 datasets due to this limited data availability. As a matter of fact, such cases motivated
us to develop our proposed noise covariance model. For comparison purposes, DIAG and
ONE-TOEP were estimated from only averaged noise datasets for all cases. We believe
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that DIAG and ONE-TOEP estimations from single trial noise datasets would yield better
performance than those from averaged noise datasets because single trial datasets include
more noise structure information than averaged datasets. We note that for the Neuromag 122
system, roughly 1200 spatiotemporal samples with 60 time sample points were obtained to
use for ONE-ML and MUL-SVD and continuous (up to 100 time points) averaged prestimulus
data were obtained to use for DIAG and ONE-TOEP. For the CTF 275 system, continuous (up
to 200 time points) averaged prestimulus time sample points were obtained.

The Bayesian inference dipole analysis is allowed to vary the number of dipole sources,
but for our purpose here we fixed the maximum number of dipole sources at three (the number
of the exact dipole sources) in order to be a representative of other multi-dipole analyses
where it is common practice to fix the number of dipole sources. The procedure used to collect
interesting (high posterior probability) samples is as follows:

S1. For each simulated datum we ran two MCMCs with different random seeds. Each
run consisted of 50 000 iterations, of which 5000 samples were collected (one sample
randomly chosen among ten iterations).

S2. We discarded the first 3000 samples as a burn-in period and stored the remaining 2000
samples for analysis.

S3. Finally, we collected a total of 4000 samples (2000 samples from each run) for each
problem. Among these 4000 samples we chose 100 samples with the highest posterior
probability and calculated the average location and time course from these. This
approach was taken in order to avoid local minima effects and to produce a good
estimate of the most likely solution.

Localization performance was checked by comparing source location error and time
course error. Source location error per dipole (LOC-ERR) and time course error per dipole
per time point (TC-ERR) were computed as follows:

LOC-ERR =
[

3∑
k=1

distance(Xk,avg, Xk,exact)

]/
3 (15)

TC-ERR =

 3∑

k=1

√√√√ 60∑
t=1

(Jk,avg(t) − Jk,exact(t))2




/
60/3. (16)

Here X·,avg and X·,exact denote the averaged source location vector of collected samples and
the exact source location vector, respectively. J·,avg and J·,exact denote averaged time course
of collected samples and the exact time course, respectively. LOC-ERR and CUR-ERR mean
averaged distance from the exact source location over three dipole sources and averaged root
square error over three dipole sources and the whole time window.

Tables 1 and 2 show the comparative performances over four kinds of noise covariance
models. A total of 20 three-dipole problems for each empirical noise dataset were tested and
averaged. As expected, DIAG showed the worst performance for all of the different empirical
datasets while MUL-SVD showed the best performance. Our proposed method, ONE-TOEP
was between DIAG and ONE-ML, thus it was superior to DIAG and was inferior to ONE-ML
and MUL-SVD in most cases.

To see how the models performed over various signal-to-noise ratio (SNR) data, we chose
16 three-dipole problems among the previously generated 40 problems for two empirical
datasets (MN1-NEURO122-LEFT and MN1-NEURO122-RIGHT). For each problem we
regenerated five kinds of problems with different SNRs (4.0, 2.0, 1.0, 0.8, 0.7) by controlling
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Table 1. The location error (LOC-ERR) comparison over four kinds of noise covariances. A total
of 20 simulated data were tested and averaged. All units are in mm. ‘−’ denotes unavailability
of noise covariance. The first four datasets were acquired from the 4D Neuroimaging Neuromag
122 system during (left and right hand) median nerve stimulation experiments for each different
subject. The next six datasets were collected from the CTF 275 system during index finger (left and
right) stimulation experiments (fifth, sixth, ninth and tenth) for the same subject for each different
day, and a median nerve stimulation experiment (seventh and eighth).

Empirical data/covariance DIAG ONE-ML MUL-SVD ONE-TOEP

MN1-NEURO122-LEFT 1.700 1.052 1.040 1.193
MN1-NEURO122-RIGHT 1.957 1.540 1.281 1.687
MN2-NEURO122-LEFT 2.060 1.431 1.343 1.640
MN2-NEURO122-RIGHT 1.714 1.367 1.070 1.407
IF1-CTF275-LEFT 1.465 – – 1.109
IF1-CTF275-RIGHT 1.558 – – 1.069
MN1-CTF275-LEFT 2.723 – – 1.353
MN1-CTF275-RIGHT 1.857 – – 1.003
IF2-CTF275-LEFT 1.451 – – 0.971
IF2-CTF275-RIGHT 1.573 – – 1.077

Table 2. The time course error (TC-ERR) comparison over four kinds of noise covariances. A total
of 20 simulated data were tested and averaged. All units are in nA m. ‘−’ denotes unavailability
of noise covariance. Data are described as in table 1.

Empirical data/covariance DIAG ONE-ML MUL-SVD ONE-TOEP

MN1-NEURO122-LEFT 0.126 0.100 0.090 0.101
MN1-NEURO122-RIGHT 0.216 0.122 0.112 0.145
MN2-NEURO122-LEFT 0.139 0.106 0.095 0.111
MN2-NEURO122-RIGHT 0.111 0.094 0.080 0.092
IF1-CTF275-LEFT 0.139 – – 0.109
IF1-CTF275-RIGHT 0.153 – – 0.112
MN1-CTF275-LEFT 0.225 – – 0.180
MN1-CTF275-RIGHT 0.190 – – 0.134
IF2-CTF275-LEFT 0.165 – – 0.125
IF2-CTF275-RIGHT 0.140 – – 0.154

peak magnitudes of the three current time courses together (the same fraction is multiplied
into the original time course). Here, we calculate SNR using

SNR =
√∑

k,t (signal at channel k, time t)2√∑
k,t (noise at channel k, time t)2

. (17)

As with the previous experiment, we used the same procedure to get interesting samples.
Figure 2 shows localization performance over various SNRs for four kinds of noise covariances.
Each point is an averaged result over well-localized6 problems. For LOC-ERR, our proposed
covariance method (ONE-TOEP) consistently yielded the intermediate performance between
ONE-ML and DIAG, while it was almost comparable to ONE-ML and MUL-SVD for TC-
ERR. This simulation study shows that compared to DIAG, our proposed covariance model

6 As SNR grows smaller, i.e., spatiotemporal signal is dominated by noise, we often saw weakest sources undetected
for ONE-ML and MUL-SVD covariances. On averaging, we excluded undetected cases.
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Figure 2. Location error (LOC-ERR) and current time course error (TC-ERR) as SNR varies.

Figure 3. 122 channel overplotted empirical MEG data for left hand median nerve stimulation.
MEG data in dashed box were analysed.

ONE-TOEP can improve localization performance by up to 3 mm (per dipole) in location
accuracy and up to about 0.15 nA m (per time point per dipole) in time course accuracy.

3.3. Empirical experiments

In this experiment, we applied our proposed noise covariance model (ONE-TOEP),
conventional diagonal noise covariance (DIAG), and multi-pair Kronecker product model
(MUL-SVD) to empirical MEG data for comparison. MN1-NEURO122-LEFT empirical
data were used for our purpose. In particular, we analysed left hand median nerve stimulation
data (25 ms window 11 ms after stimulus onset), which is illustrated in figure 3. As with
the simulations in the previous subsection, we did MCMC runs with different random seeds
and obtained consistent results. Initially, we allowed the number of dipoles to vary up to
a maximum of six, on the assumption that the true model order would be between one and
six. For ONE-TOEP and MUL-SVD, two dipole sources were consistently seen7, while five
sources showed up for the DIAG analyses. Looking at source locations and time course
shapes in the DIAG results, two sources correspond to the sources found in the ONE-TOEP
and MUL-SVD results. The extra three sources in the DIAG analysis are most likely spurious
sources modelling correlated noise in the data. Based on the results, the reasonable model
order may be two.

For our next analyses, we restricted the number of allowable dipole sources to two and
ran MCMCs for three covariances. Interestingly, for the DIAG covariance model, the two
source clusters localize differently from those for the ONE-TOEP and MUL-SVD models,
as shown in figure 4. The blue clusters for all cases are at the same location, even though

7 Two interesting sources on median nerve stimulation empirical data were recently reported in Huang et al (2000).
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Figure 4. Left hand median nerve stimulation experiment for analysis using DIAG, ONE-TOEP
and MUL-SVD noise covariance models. Overlayed source distribution MRIVIEW plots and their
corresponding time course histogram plots, respectively. Top: figure (left) showing the orientation
of the whole head. The highlighted rectangle in this figure shows the view area for the source
location figures. Confidence level colour bar (right). Second row: DIAG. Third row: ONE-TOEP.
Fourth row: MUL-SVD. In the second row, the top time course histogram plot on the left is for the
outer source distribution blob on the right and the bottom one is for the inner source distribution
blob. However, in the third and fourth rows the top time course histogram plots are for inner source
distribution blobs and the bottom ones are for outer source distribution blobs.
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the time course histogram plot for the DIAG analysis is very different from those for the
ONE-TOEP and MUL-SVD analyses. The red cluster for the DIAG case is clustered more
densely and is more superficial than the blue cluster, while those for the ONE-TOEP and
MUL-SVD are located slightly inward and above the associated blue clusters. As a whole,
DIAG yielded a different result from ONE-TOEP and MUL-SVD, whose results are consistent
with those reported previously (Allison et al 1991a, 1991b, Wood et al 1985, 1988, Huang et al
2000, Jun et al 2005).

Our results suggest that our Toeplitz-based noise covariance model is more effective in
modelling noise than a diagonal covariance model, when used in analyses of empirical MEG
data.

4. Discussion

In general, most parametric approaches using noise covariance estimation require a
predetermined number of sources, which can be roughly estimated through a singular value
decomposition of the MEG measurements. One advantage of the Bayesian inference dipole
analysis used in this work is that it does not require a preset number of sources. As reported
in section 3.3, when the number of sources is allowed to be higher than the expected or exact
number of sources, the DIAG covariance model produced more sources than expected for
most simulated and empirical MEG data. Due to inadequate noise structure modelling in the
DIAG case, these extra sources are most likely modelling noise in the data. With our proposed
ONE-TOEP we rarely see these extra sources.

As seen in equation (9), our proposed ONE-TOEP model can be easily computed from
continuous spatiotemporal noise data. Temporally discontinuous noise data can be used to
estimate sensor variances, but its usefulness in estimating the temporal covariance matrix
would depend on characteristics of the temporal discontinuities. We would like to investigate
how more general noise information can be used in our proposed covariance estimation
method. For less or even far less temporal noise information than the dimension of the
temporal covariance matrix, the noise covariance can be estimated roughly by setting the
temporal covariance to zero for more delayed time points than the available time points in
the noise information. However, one simulation study (not shown) indicates that very rough
estimation of the temporal covariance matrix is likely to reduce localization performance,
making the conventional diagonal covariance-based analysis a better choice.

Our proposed model consists of a diagonal matrix and a Toeplitz matrix. Its invertibility
relies on the invertibility of each matrix. Even though we cannot assure the invertibility of
the estimated Toeplitz matrix, we have seen empirically that the Toeplitz temporal covariance
matrix is non-singular. Regarding simulation studies, we tested our noise covariance model
for three-dipole problems. Single-dipole problems and two-dipole problems were tested, but
we could not see any significant differences. Four or more dipole problems would yield a
more complex posterior distribution, and could cause even small errors in the noise modelling
to severely degrade localization performance. Therefore, we expect our covariance model to
be more advantageous for such cases than a conventional diagonal covariance model.

5. Conclusion

We proposed a different spatiotemporal noise covariance model consisting of a Kronecker
product between a diagonal spatial matrix and a Toeplitz temporal covariance matrix. We also
proposed a simple estimation method for this noise covariance model using intrinsic statistics
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of the noise information. This estimation is simple to implement and can be computed in
real time. We have shown through a simulation study that the proposed Toeplitz-based model
is a better choice in terms of localization performance than the conventional diagonal noise
covariance model, and can be used in the cases where noise information is not sufficiently
available to use more accurate noise models. In inverse analyses of empirical MEG data, the
proposed Toeplitz-based model outperformed a conventional diagonal covariance model.

Appendix

We describe detailed experimental paradigms of empirical datasets acquired from the
Neuromag 122 system and the CTF 275 system.

• Neuromag 122 system

– MN1-NEURO122-LEFT and MN1-NEURO122-RIGHT
The median nerve was stimulated using two surface electrodes placed on the forearm.
A 0.5 ms current pulse was applied using a Grass constant current stimulator. The
electrodes and voltage were adjusted until a thumb twitch was obtained in each hand.
If the maximum voltage was reached without a thumb twitch, the subject was run with
the maximum voltage. The right and left median nerves were stimulated randomly
with a 0.5 s ISI (interstimulus interval). Data were digitized at 1 kHz with the online
filters set to 0.03–330 Hz. An interval of 0.1 s prestimulus and 0.5 s poststimulus was
collected. Data were (1 − median)8 filtered to remove low frequency drifts but were
not filtered for 60 Hz noise and its harmonics because their effects were negligibly
small.

– MN2-NEURO122-LEFT and MN2-NEURO122-RIGHT
Median nerve stimulation at the motor twitch threshold was applied using a block
design of 30 s on, 30 s off for a total of ten blocks for each of eight runs. Data were
acquired during both stimulation ‘on’ and ‘off’ epochs, the latter being used to
construct the present noise data set. Stimulus alternated across runs, with four runs
total of left side stimulation and four runs total of right side stimulation. The ISI was
randomized between 0.25 and 0.75 s. Data were collected with 1000 Hz sampling from
a male subject, age 38. One of 122 channels was discarded due to it malfunctioning.
Data were (1 − median) filtered. 60 Hz noise and its harmonics were filtered out by
removal of peaks in the spectrum and interpolation between adjacent spectrum points.

• CTF 275 system
All data were collected with 2400 Hz sampling from the same female, age 30. The ISI
for all datasets is 1.5 s on average, but varies between 1.25 and 1.75 s. Noise cancellation
procedure was off.

– IF1-CTF275-LEFT and IF1-CTF275-RIGHT
Index finger stimulation was applied. 2 µs pulses were generated with a Grass S88
stimulator.

– MN1-CTF275-LEFT and MN1-CTF275-RIGHT
The median nerve stimulation was applied. 2 µs pulses were generated with a Grass
S88 stimulator.

– IF2-CTF275-LEFT and IF2-CTF275-RIGHT
The same experiment procedure as IF1-CTF275-LEFT and IF1-CTF275-RIGHT was
applied on a different day.

8 Median filtered data were subtracted from unfiltered original data.
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Uutela K, Hämäläinen M and Salmelin R 1998 Global optimization in the localization of neuromagnetic sources
IEEE Trans. Biomed. Eng. 45 716–23

Wood C C, Cohen D, Cuffin B N and Allison T 1985 Electrical sources in human somatosensory cortex: identification
by combined magnetic and potential recordings Science 227 1051–3

Wood C C, Spencer D D, Allison T, McCarthy G, Williamson P D and Goff W R 1988 Localization of
human sensorimotor cortex during surgery by cortical surface recordings of somatosensory evoked potentials
J. Neurosurg. 68 99–111

http://www.lanl.gov/p/p21/mriview.shtml
http://dx.doi.org/10.1088/0031-9155/32/1/004
http://dx.doi.org/10.1002/(SICI)1097-0193(1999)7:3<195::AID-HBM4>3.0.CO;2-F
http://dx.doi.org/10.1109/10.678606

	1. Introduction
	2. Noise covariance models
	2.1. Diagonal model
	2.2. Kronecker product models
	2.3. Our proposed noise covariance model and its estimation method

	3. Experiments
	3.1. Bayesian inference dipole analysis
	Formulation.
	Sampling.
	3.2. Comparative localization performance for various noise covariances
	3.3. Empirical experiments

	4. Discussion
	5. Conclusion
	Appendix
	Acknowledgments
	References

